Fourier Series » Exercise – 1
1. The Fourier transform of product of two time functions [f1 (t)f2 (t)] is given by :
(a) [f1 (ω) + f2 (ω)]
(b) [f1 (ω) / f2 (ω)]
(c) [f1 (ω) * f2 (ω)]
(d) [f1 (ω) x f2 (ω)]
Explanation
Explanation : No answer description available for this question. Let us discuss.
Subject Name : Engineering Mathematics Exam Name : IIT GATE, UPSC ESE, RRB, SSC, DMRC, NMRC, BSNL, DRDO, ISRO, BARC, NIELIT Posts Name : Assistant Engineer, Management Trainee, Junior Engineer, Technical Assistant
Engineering Mathematics Books
Related Posts Complex Numbers » Exercise - 13. If ω is an imaginary cube root of unity, then (1 + ω – ω2)7 equals : (a) 128 ω (b) 128 ω2 (c) -128 ω (d) -128 ω2 Tags: ω, engineering, mathematics
Complex Numbers » Exercise - 14. Value of ω1999 + ω299 + 1 is : (a) 0 (b) 1 (c) -1 (d) 2 Tags: ω, engineering, mathematics
Fourier Series » Exercise - 15. The inverse Fourier transform of product of two time functions [f1(ω)f2(ω)] is given by : (a) [f1(t) + f2(t)] (b) [f1(t) * f2(t)] (c) [f1(t) / f2(t)] (d) [f1(t) x f2(t)] Tags: fourier, series, ω, engineering, mathematics
Complex Numbers » Exercise - 19. If the cube roots of unity are 1,ω,ω2 then 1 + ω + ω2 = (a) 0 (b) 1 (c) -1 (d) ω Tags: ω, engineering, mathematics
Complex Numbers » Exercise - 1 1. Number of solutions to the equation (1 –i)x = 2x is : (a) 1 (b) 2 (c) 3 (d) no solution 2. If , arg(z) < 0, then arg(-z) - arg(z) = (a) π (b) -π/4 (c) -π/2 (d) π/2 3. If ω is an imaginary cube root of unity, then (1 + ω – ω2)7 equals : (a) 128 ω (b) 128 ω2 (c) -128 ω (d) -128 ω2 4. Value of ω1999 + ω299 + 1 is : (a) 0 (b) 1 (c) -1 (d) 2 5. Principal argument of z = -√3+i is : (a) 5π/6 (b) π/6 (c) -5π/6 (d) none 6. Which one is not a root of the fourth root of unity. (a) i (b) 1 (c) i/√2 (d) -i 7. If z3 – 2z2 + 4z – 8 = 0 then : (a) |z| = 1 (b) |z| = 2 (c) |z| = 3 (d) none 8. i1 + i2 + i3 + i4 + ……… + i1000 = (a) 0 (b) 1 (c) -1 (d) none 9. If the cube roots of unity are 1,ω,ω2 then 1 + ω + ω2 = (a) 0 (b) 1 (c) -1 (d) ω 10. The small positive integer 'n' for which (1+i)2n = (1-i)2n is : (a) 2 (b) 4 (c) 8 (d) 12 Tags: ω, engineering, mathematics