Differential Calculus » Exercise – 1
1. Lagrange’s mean value theorem is a special case of :
(a) Rolle’s theorem
(b) Cauchy’s mean value theorem
(c) Taylor’s theorem
(d ) Taylor’s series

Subject Name : Engineering Mathematics |
Exam Name : IIT GATE, UPSC ESE, RRB, SSC, DMRC, NMRC, BSNL, DRDO, ISRO, BARC, NIELIT |
Posts Name : Assistant Engineer, Management Trainee, Junior Engineer, Technical Assistant |
Engineering Mathematics Books |
GATE 2023 Total Info | ENGG DIPLOMA | UGC NET Total Info |
IES 2023 Total Info | PSUs 2022 Total Info | CSIR UGC NET Total Info |
JAM 2023 Total Info | M TECH 2023 Total Info | RAILWAY 2022 Total Info |
Related Posts
Differential Calculus » Exercise - 1 1. Lagrange’s mean value theorem is a special case of : (a) Rolle’s theorem (b) Cauchy’s mean value theorem (c) Taylor’s theorem (d) Taylor’s series 2. The first-three non-zero terms in the expansion of ex tan x is : (a) x + x2 + (1/3)x3 (b) x + (x3/3) + (2/5)x5 (c) x + x2 + (5/6)x3 (d) x + (x3/3) + (1/6)x5 3. is equal to : (a) 1/2 (b) 1 (c) √2 (d) None of these 4. is equal to : (a) 2 (b) e (c) 1 (d) None of these 5. is equal to : (a) 15 (b) 1/15 (c) 5/3 (d) 3/5