Complex Numbers » Exercise – 1
1. Number of solutions to the equation (1 –i)x = 2x is :
(a) 1
(b) 2
(c) 3
(d) no solution
Explanation
Explanation : No answer description available for this question.
Let us discuss. 2. If , arg(z) < 0, then arg(-z) – arg(z) =
(a) π
(b) –π/4
(c) –π/2
(d) π/2
Explanation
Explanation : No answer description available for this question.
Let us discuss. 3. If ω is an imaginary cube root of unity, then (1 + ω – ω2 )7 equals :
(a) 128 ω
(b) 128 ω2
(c) -128 ω
(d) -128 ω2
Explanation
Explanation : No answer description available for this question.
Let us discuss. 4. Value of ω1999 + ω299 + 1 is :
(a) 0
(b) 1
(c) -1
(d) 2
Explanation
Explanation : No answer description available for this question.
Let us discuss. 5. Principal argument of z = -√3+i is :
(a) 5π/6
(b) π/6
(c) -5π/6
(d) none
Explanation
Explanation : No answer description available for this question.
Let us discuss. Related Posts Complex Numbers » Exercise - 19. If the cube roots of unity are 1,ω,ω2 then 1 + ω + ω2 = (a) 0 (b) 1 (c) -1 (d) ω Tags: ω, unity, engineering, mathematics
Fourier Series » Exercise - 1 1. The Fourier transform of product of two time functions [f1(t)f2(t)] is given by : (a) [f1(ω) + f2(ω)] (b) [f1(ω) / f2(ω)] (c) [f1(ω) * f2(ω)] (d) [f1(ω) x f2(ω)] Tags: ω, engineering, mathematics
Complex Numbers » Exercise - 13. If ω is an imaginary cube root of unity, then (1 + ω – ω2)7 equals : (a) 128 ω (b) 128 ω2 (c) -128 ω (d) -128 ω2 Tags: ω, engineering, mathematics
Complex Numbers » Exercise - 14. Value of ω1999 + ω299 + 1 is : (a) 0 (b) 1 (c) -1 (d) 2 Tags: ω, engineering, mathematics
Integral Calculus » Exercise - 15. The value of the integral is : & (a) 5π/32 (b) 16/35 (c) (d) Tags: π, engineering, mathematics