Combinational Circuits – Exercise – 4

176. What distinguishes the look-ahead-carry adder?

(a) It is slower than the ripple-carry adder.
(b) It is easier to implement logically than a full adder.
(c) It is faster than a ripple-carry adder.
(d) It requires advance knowledge of the final answer.

Answer
Answer : (c)
Explanation
Explanation : No answer description available for this question. Let us discuss.
Discuss
Discuss : Write your answer. Click here.

177. The truth table for a full adder is shown below. What are the values of X, Y, and Z?

(a) X = 0, Y = 1, Z = 1
(b) X = 1, Y = 1, Z = 1
(c) X = 1, Y = 0, Z = 1
(d) X = 0, Y = 0, Z = 1

Answer
Answer : (b)
Explanation
Explanation : No answer description available for this question. Let us discuss.
Discuss
Discuss : Write your answer. Click here.

178. The 2’s-complement system is to be used to add the signed binary numbers 11110010 and 11110011. Determine, in decimal, the sign and value of each number and their sum.

(a) –113 and –114, –227
(b) –14 and –13, –27
(c) –11 and –16, –27
(d) –27 and –13, –40

Answer
Answer : (b)
Explanation
Explanation : No answer description available for this question. Let us discuss.
Discuss
Discuss : Write your answer. Click here.

179. When performing subtraction by addition in the 2’s-complement system:

(a) the minuend and the subtrahend are both changed to the 2’s-complement.
(b) the minuend is changed to 2’s-complement and the subtrahend is left in its original form.
(c) the minuend is left in its original form and the subtrahend is changed to its 2’s-complement.
(d) the minuend and subtrahend are both left in their original form.

Answer
Answer : (c)
Explanation
Explanation : No answer description available for this question. Let us discuss.
Discuss
Discuss : Write your answer. Click here.

180. The most commonly used system for representing signed binary numbers is the:

(a) 2’s-complement system.
(b) 1’s-complement system.
(c) 10’s-complement system.
(d) sign-magnitude system.

Answer
Answer : (a)
Explanation
Explanation : No answer description available for this question. Let us discuss.
Discuss
Discuss : Write your answer. Click here.

Related Posts

  • Binary Codes - Exercise - 251. Decimal 474 is ________ in BCD. (a) 0100 0111 0100 (b) 0100 1011 0101 (c) 0100 1001 0011 (d) 0110 1011 1001 52. The largest BCD number that can be represented with four binary bits is ________. (a) 9 (b) 10 (c) 15 (d) 16 53. The decimal equivalent of the BCD number 1010 is ________. (a) 8 (b) 10 (c) 12 (d) invalid
    Tags: bcd, binary, decimal, number, mcq, series
  • Number Systems - Exercise - 251. The decimal number for octal 748 is ________. (a) 74 (b) 60 (c) 22 (d) 62 52. The octal number for binary 1101110101110110 is ________. (a) 6545218 (b) 5565618 (c) 1566568 (d) 1565668 53. The binary number for F3A16 is ________. (a) 111100111010 (b) 111100111110 (c) 000000111010 (d) 000011000100 54. The binary number 11101011000111010 can be written in hexadecimal as ________. (a) DD63A16 (b) 1D63A16 (c) 1D54A16 (d) 1D63116 55. The binary number 101110101111010 can be written in octal as ________. (a) 515628 (b) 565778 (c) 656278 (d) 565728 56. Determine the decimal equivalent of the signed binary number 11110100 in 1's complement. (a) 116 (b) –12 (c) 11 (d) 128 57. Express the decimal number –37 as an 8-bit number in sign-magnitude. (a) 10100101 (b) 00100101 (c) 11011000 (d) 11010001 58. The 2's complement of 11100111 is ________. (a) 11100110 (b) 00011001 (c) 00011000 (d) 00011010 59. The 1's complement of 10011101 is ________. (a) 01100010 (b) 10011110 (c) 01100001 (d) 01100011 60. The difference of 111 – 001 equals ________. (a) 100 (b) 111 (c) 001 (d) 110 61. The sum of 11101 + 10111 equals ________. (a) 110011 (b) 100001 (c) 110100 (d) 100100 62. The…
    Tags: number, binary, decimal, mcq, series
  • Combinational Circuits - Exercise - 3101. When Karnaugh mapping, we must be sure to use the ________ number of loops. (a) maximum (b) minimum (c) median (d) Karnaugh 102. VHDL is very strict in the way it allows us to assign and compare ________ such as signals, variables, constants, and literals. (a) objects (b) LOGIC_VECTORS (c) designs (d) arrays 103. The ________ statement evaluates the variable status. (a) IF/THEN (b) IF/THEN/ELSE (c) CASE (d) ELSIF 104. In VHDL, data can be each of the following types except ________. (a) BIT (b) BIT_VECTOR (c) STD_LOGIC (d) STD_VECTOR 105. Except for ________, STD_LOGIC may have the following values. (a) 'z' (b) 'U' (c) '?' (d) 'L' 106. After each circuit in a subsection of a VHDL program has been ________, they can be combined and the subsection can be tested. (a) designed (b) tested (c) engineered (d) produced 107. The correct output for this XOR truth table is ________. (a) (b) (c) (d) 108. In an odd-parity system, the data that will produce a parity bit = 1 is ________. (a) data = 1010011 (b) data = 1111000 (c) data = 1100000 (d) All of the above 109. Parity generation and checking is used to detect ________.…
    Tags: nbsp, numbers, binary, bit, decimal, add, bcd, number, two's-complement, subtraction
  • Number Systems - Exercise - 3101. Convert the following octal number to decimal. 178 (a) 51 (b) 82 (c) 57 (d) 15 102. Hexadecimal letters A through F are used for decimal equivalent values from: (a) 1 through 6 (b) 9 through 14 (c) 10 through 15 (d) 11 through 17 103. Convert the following octal number to decimal. 358 (a) 71 (b) 17 (c) 92 (d) 29 104. Convert the following binary number to octal. 0011010112 (a) 1538 (b) 3518 (c) 2538 (d) 3528 105. Convert the following binary number to octal. 0101111002 (a) 1728 (b) 2728 (c) 1748 (d) 2748 106. Convert the following decimal number to octal.281 (a) 1348 (b) 4318 (c) 3318 (d) 1338 107. Convert the following decimal number to octal.39 (a) 638 (b) 368 (c) 478 (d) 748 108. Convert the following octal number to binary.1048 (a) 0010001002 (b) 1000000012 (c) 00101002 (d) 10000012 109. One hex digit is sometimes referred to as a(n): (a) byte (b) nibble (c) grouping (d) instruction 110. Convert the following octal number to binary.768 (a) 1101112 (b) 1111102 (c) 1111002 (d) 1001112 111. Convert the following binary number to decimal. 100110102 (a) 154 (b) 155 (c) 153 (d) 157 112. Digital electronics is…
    Tags: binary, decimal, number, mcq, series
  • Combinational Circuits - Exercise - 5201. The carry-out of a full adder is ________. (a) (b) (c) (d) 202. Binary numbers can be added together in a basic parallel-adder circuit when ________. (a) negative numbers are in 2's-complement form (b) negative numbers are in 1's-complement form (c) all carry pins are grounded (d) all negative numbers are noted 203. The contents of the A register after is ________. (a) 0000 (b) 0001 (c) 1001 (d) 1010 204. Solve this binary problem: 01011000 ÷ 00001011 = ________. (a) 1010 (b) 0110 (c) 1000 (d) 1110 205. The two's complement of 00001111 is ________. (a) 11111111 (b) 11110000 (c) 11110001 (d) 11110111 206. Solve this binary problem: 1001 × 1100 = ________. (a) 01110001 (b) 01111000 (c) 01101100 (d) 01101110 207. The binary subtraction 1 – 1 = ________. (a) difference = 0borrow = 0 (b) difference = 1borrow = 0 (c) difference = 1borrow = 1 (d) difference = 0borrow = 1 208. To make an eight-bit adder from two four-bit adders you must connect ________. (a) the high-order carry-in to ground (b) the low-order carry-out to the high-order carry-in (c) the high-order carry-out to ground (d) the low-order sum to the high-order data input 209.…
    Tags: bcd, binary, bit, numbers, system, s-complement, mcq, series

LEAVE A REPLY

Please enter your comment!
Please enter your name here